Divya Shah, Giorgio Metta, Alberto Parmiggiani

PhD Student
divya.shah@iit.it
WORKSPACE ANALYSIS AND THE EFFECT OF GEOMETRIC PARAMETERS FOR PARALLEL MECHANISMS OF THE N-UUU CLASS

DETC2018-85258
27.08.2018
1. INTRODUCTION
Hand-Forearm Assembly
- 12 DOF
- 290mm x 70mm x 40mm
- 0.95 kg
iCUB WRIST

2DOF Tendon-Driven Coupled Mechanism
DESIRED CHARACTERISTICS

2 Fully Decoupled DOF
 Independent Yaw and Pitch Motions.

Large Range of Motion
 Over +/- 45 degrees.

Simpler Kinematics
 Easy to model and control.

Compact Design
 Space Constraints on the forearm.

Higher Payload-to-Weight Ratio
 Higher payload-to-weight ratio.
N-UU MECHANISMS

Wu and Carricato; ASME J. Mechanisms and Robotics; 2017
OMNI - WRIST III

Mirror-symmetric architecture, large hemispherical workspace, slender form factor
2. MODELLING & SIMULATION
OUR APPROACH

- **CAD Model**: Create conceptual design of the mechanism using CAD tools.
- **Mechanism Simulation**: Run kinematic simulations spanning the entire actuator range.
- **Extract Measures**: Record and extract platform coordinates and orientation angles throughout the simulation.
- **Contour Plots**: Generate workspace and isotropy contours against the input actuators.
MECHANISM SIMULATION

Full workspace scan of the mechanism.
CONSTANT MAGNITUDE

NORMALIZED CARTESIAN WORKSPACE
3. ANALYSES
WORKSPACE ANALYSES - PLATFORM COORDINATES - GIMBAL

X

Y

Z

2DOF Gimbal X-Coordinate

2DOF Gimbal Y-Coordinate

2DOF Gimbal Z-Coordinate
WORKSPACE ANALYSES - PLATFORM COORDINATES - $\alpha = 30^\circ$
WORKSPACE ANALYSES - PLATFORM COORDINATES - $\alpha = 45^\circ$
WORKSPACE ANALYSES - PLATFORM COORDINATES - \(\alpha = 60^\circ \)
WORKSPACE ANALYSES - EULER ANGLES - $\alpha = 30^\circ$

- **Roll**
- **Yaw**
- **Pitch**
WORKSPACE ANALYSES - EULER ANGLES - $\alpha = 60^\circ$
\[J = \begin{bmatrix}
\frac{\partial \theta_p}{\partial q_1} & \frac{\partial \theta_p}{\partial q_2} \\
\frac{\partial \theta_y}{\partial q_1} & \frac{\partial \theta_y}{\partial q_2}
\end{bmatrix} \]

\[\Delta = \frac{M}{\Psi} = \frac{\sqrt[\text{m}]{\text{det}(JJ^T)}}{\text{trace}(JJ^T)/m} \]
CONCLUSIONS

Spherical
The magnitude of the platform center w.r.t the base is always constant.

Asymmetry
Mechanism behaviour is not symmetric, i.e., the plots are not centered with zero.

Warping
Workspace diverges towards the extremes. This effect increases with α.

Parasitic motion
Platform possesses undesired *Roll* motion.

Coupling
Pitch and yaw motions of the platform are dependent of each other.

Anisotropy
Mechanism is not fully isotropic throughout the workspace. Anisotropy increases with α.
OPENING

Post-Doc on “The design of better iCub Hands”

alberto.parmiggiani@iit.it
Any questions?

- divya.shah@iit.it
- iit.it/people/divya-shah
FIN.
ANALYTICAL MODEL

» Limb A
\[A = A_1(\theta_1)A_2(\theta_2)A_3(\theta_3)A_4(\theta_4) \]

» Limb B
\[B = B_5(\theta_5)B_6(\theta_6)B_7(\theta_7)B_8(\theta_8) \]

» Platform C
\[C = T_{XYZ}(x, y, z)R_Z(\alpha)R_Y(\beta)R_X(\gamma) \]

» Closed-Form
\[A = B = C \]
ERROR COMPARISON BETWEEN CAD SIMULATION AND ANALYTICAL COMPUTATIONS
4.

GAMMA CASE PLOTS
WORKSPACE ANALYSES - X COORDINATE [GAMMA CASE]

Gimbal

\[\gamma = 120^\circ \]

\[\gamma = 90^\circ \]
WORKSPACE ANALYSES - Y COORDINATE [GAMMA CASE]

Gimbal

\(\gamma = 120^\circ \)

\(\gamma = 90^\circ \)
WORKSPACE ANALYSES - Z COORDINATE [GAMMA CASE]

Gimbal

\(\gamma = 120^\circ \)

\(\gamma = 90^\circ \)
Gimbal

$\gamma = 120^\circ$

$\gamma = 90^\circ$
WORKSPACE ANALYSES - YAW [GAMMA CASE]

Gimbal

$\gamma = 120^\circ$

$\gamma = 90^\circ$
WORKSPACE ANALYSES - PITCH [GAMMA CASE]

Gimbal

\(\gamma = 120^\circ \)
\(\gamma = 90^\circ \)
ISOTROPY ANALYSIS [GAMMA CASE]

Gimbal

$\gamma = 120^\circ$

$\gamma = 90^\circ$