In order to reduce the share of the motive power required to drive the robot’s links, with the aim of increasing its payload-to- weight ratio, this article studies the best way to relocate the actuators (inertial load) but not complicate the joint kinematics. For this, several Parallel Kinematic Mechanisms (PKMs) were considered, namely a 4-UU mechanism, a spherical 5-bar mechanism and a spherical 6-bar mechanism, with gimbal-like rotations. Computer-Aided Design (CAD) modelling and simulations exploring the workspaces for each of these mechanisms was performed. The complete workspace and isotropy analyses comparing these mechanisms to a gimbal system are presented. The general observations suggest that these mechanisms posses a non-uniform workspace with a “warping” behaviour. However, the spherical six bar mechanism proves to be the best solution so far with isotropy nearly >= 0.9 throughout its workspace.