This paper proposes a comprehensive methodology for the computer-aided design and optimization of a robotic workcell for the automated fiber placement. The robotic cell, comprising of a 6-axis industrial manipulator and an actuated positioner, is kinematically redundant with respect to the considered task. An efficient optimization technique for managing these kinematic redundancies is proposed. The robot/positioner motion planning and robotic cell layout design in a CAD environment are presented. To confirm validity of the developed methodology, experimental results are presented that deal with automation of thermoplastic fiber placement process.