

Increased Productivity of an Automated Tape Winding Process: SPIDE-TP Platform

Divya SHAH

Supervisors: B. Courtemanche; S. Caro; A. Pashkevich

Master Thesis Defense

29 August, 2017

1 Introduction

- 2 Automated Tape Winding Process
- **3** SPIDE-TP Platform
- 4 System & Task Modelling
- **5** Optimal Trajectory Generation
- 6 Optimal Motion Implementation

Conclusions

1 Introduction

- 2 Automated Tape Winding Process
- **3** SPIDE-TP Platform
- 4 System & Task Modelling
- **5** Optimal Trajectory Generation
- 6 Optimal Motion Implementation
- Conclusions

- Extensive use in recent times
- Excellent material properties

Mike Garry. Polymer Composites vs. Steel.

- Extensive use in recent times
- Excellent material properties
- Manufacturing of high performance structures
- Applications: Aerospace & Automotive Industries

Mike Garry. Polymer Composites vs. Steel.

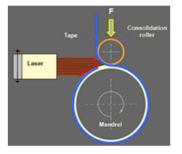
Automated Tape Winding Process

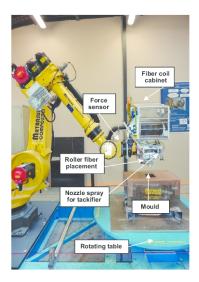
- Automated Tape Laying
 (ATL)
- Laying on molds
- Shape limitations

George Marsh (2011). "Automating aerospace composites production with fibre placement". In: REINFORCED plastics

- Automated Tape Laying (ATL)
- Laying on molds
- Shape limitations

- Automated Tape Winding (ATW)
- Workpiece on rotating mandrel
- Complex geometries


George Marsh (2011). "Automating aerospace composites production with fibre placement". In: REINFORCED plastics


Divya Shah

Automated Tape Winding Process

Introduction Automated Tape Winding Process SPIDE-TP Platform System & Task Modelling Optimal Trajectory Generation Optimal Motion Implementation

Conclusions

Mariem Belhaj et al. (2013). "Dry fiber automated placement of carbon fibrous preforms". In: Composites Part B: Engineering

Divya Shah

Automated Tape Winding Process

Advantages

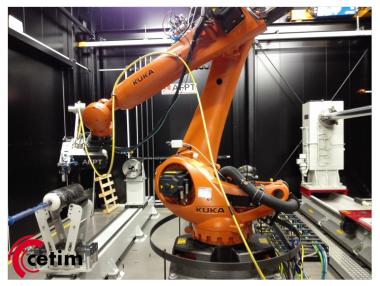
- Precise control of placement head
- In-situ consolidation
- Repeatability

Advantages

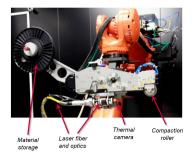
- Precise control of placement head
- In-situ consolidation
- Repeatability

Challenges

- Kinematic redundancy management
- Manipulator motion planning


Advantages

- Precise control of placement head
- In-situ consolidation
- Repeatability


Challenges

- Kinematic redundancy management
- Manipulator motion planning
 Solution
- Graph-based Discrete
 Optimization

Introduction Automated Tape Winding Process SPIDE-TP Platform System & Task Modelling Optimal Trajectory Generation Optimal Motion Implementation Conclusions

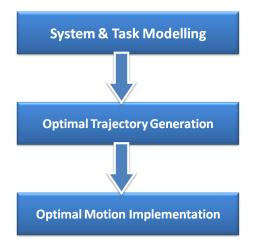
- Different Winding Axes
- Large Axis: Diameter 0.25*m* to 2.50*m*
- Small Axis: Diameter 25mm to 500mm

- Winding Head Assembly
- Laser (4kW)
- Thermal Camera
- Compaction Roller

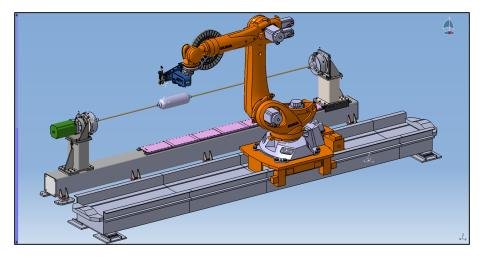
Current Methodology

Composicad software: Workpiece modelling & Track generation

Post-processor: Robot program


Current Methodology

- Composicad software: Workpiece modelling & Track generation
- Post-processor: Robot program


Key Challenges

- Kinematic redundancy not fully exploited
- Discontinuities in the trajectory
- High Raw material cost

- Estimate maximum production time of a given track
- Identify the limiting axis
- Select the tools to manage kinematic redundancy
- Estimate the gain of productivity expected
- Implement proposed methods

Introduction Automated Tape Winding Process SPIDE-TP Platform System & Task Modelling Optimal Trajectory Generation Optimal Motion Implementation Conclusions

$$\textit{rob}(\vec{q_r}) = {^{\textit{RB}}} T_1(q_1) \cdot {^1}T_2(q_2) \cdot {^2}T_3(q_3) \cdot {^3}T_4(q_4) \cdot {^4}T_5(q_5) \cdot {^5}T_{\textit{RF}}(q_6) \quad (1)$$

Winding Axis Model

$$pos(q_p) = Rot_Z(q_p)$$

$$lin(q_l) = Trans_X(q_l) \tag{3}$$

$$rob(\vec{q_r}) = {^{RB}} T_1(q_1) \cdot {^1T_2(q_2)} \cdot {^2T_3(q_3)} \cdot {^3T_4(q_4)} \cdot {^4T_5(q_5)} \cdot {^5T_{RF}(q_6)}$$
(1)

Winding Axis Model

$$pos(q_p) = Rot_Z(q_p)$$

Linear Axis Model

$$lin(q_l) = Trans_X(q_l) \tag{3}$$

$$rob(\vec{q_r}) = {^{RB}} T_1(q_1) \cdot {^1T_2(q_2)} \cdot {^2T_3(q_3)} \cdot {^3T_4(q_4)} \cdot {^4T_5(q_5)} \cdot {^5T_{RF}(q_6)}$$
(1)

Winding Axis Model

$$pos(q_p) = Rot_Z(q_p)$$

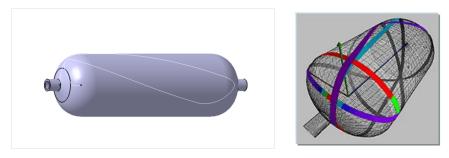
(2)

Linear Axis Model

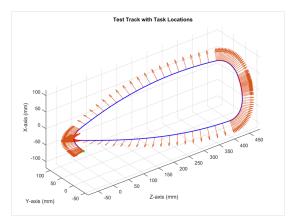
$$lin(q_l) = Trans_X(q_l) \tag{3}$$

$$rob(\vec{q_r}) = {^{RB}} T_1(q_1) \cdot {^1T_2(q_2)} \cdot {^2T_3(q_3)} \cdot {^3T_4(q_4)} \cdot {^4T_5(q_5)} \cdot {^5T_{RF}(q_6)}$$
(1)

Winding Axis Model

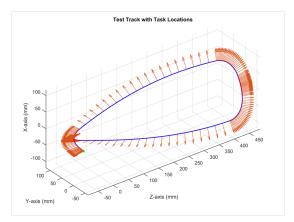

$$pos(q_p) = Rot_Z(q_p)$$

(3)


Linear Axis Model

$$\textit{lin}(q_l) = \textit{Trans}_{\textit{X}}(q_l)$$

- Cylindrical workpiece with hemi-spherical domes on the ends.
- Winding path generated from the Composicad software.
- Current Travelling time: 14sec.



Video for the test track.

Task Model

$${}^{W}\boldsymbol{T}_{\boldsymbol{T}\boldsymbol{L}_{i}} = \begin{bmatrix} \vec{\boldsymbol{n}_{i}} & \vec{\boldsymbol{s}_{i}} & \vec{\boldsymbol{a}_{i}} & \vec{\boldsymbol{p}_{i}} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{Rot}(\vec{\varphi_{i}}) & \vec{\boldsymbol{p}_{i}} \\ 0 & 0 & 1 \end{bmatrix} | i = 1, 2, ..., n \quad (4)$$

Task Model

^W
$$T_{TL_i} = \begin{bmatrix} \vec{n_i} & \vec{s_i} & \vec{a_i} & \vec{p_i} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} Rot(\vec{\varphi_i}) & \vec{p_i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $|i = 1, 2, ..., n$ (4)

Introduction
 Automated Tape Winding Process
 SPIDE-TP Platform
 System & Task Modelling
 Optimal Trajectory Generation
 Optimal Motion Implementation
 Conclusions

Fask Representation

$${}^{D}\boldsymbol{T}_{TL_{i}}(\vec{\boldsymbol{q}_{r}}) = {}^{O}\boldsymbol{T}_{RB}.\boldsymbol{rob}(\vec{\boldsymbol{q}_{r}}).{}^{RF}\boldsymbol{T}_{T}.{}^{T}\boldsymbol{T}_{TL_{i}}$$
(5)

$$\boldsymbol{T}_{\boldsymbol{T}\boldsymbol{L}_{i}}(q_{\rho}) =^{\boldsymbol{0}} \boldsymbol{T}_{\boldsymbol{P}\boldsymbol{B}} \cdot \boldsymbol{p}\boldsymbol{os}(q_{\rho}) \cdot {}^{\boldsymbol{P}\boldsymbol{F}} \boldsymbol{T}_{\boldsymbol{W}} \cdot {}^{\boldsymbol{W}} \boldsymbol{T}_{\boldsymbol{T}\boldsymbol{L}_{i}}$$
(6)

Task Constraint

⁰ T_{RB} .rob $(\vec{q_r})$.^{RF} T_T .^T $T_{TL_i} = {}^0 T_{PB}$.pos (q_p) .^{PF} T_W .^W T_{TL_i} (7)

Task Representation

$${}^{0}T_{TL_{i}}(\vec{q_{r}}) = {}^{0}T_{RB}.rob(\vec{q_{r}}).{}^{RF}T_{T}.{}^{T}T_{TL_{i}}$$
(5)
$${}^{0}T_{TL_{i}}(q_{p}) = {}^{0}T_{PB}.pos(q_{p}).{}^{PF}T_{W}.{}^{W}T_{TL_{i}}$$
(6)

Task Constraint

⁰ T_{RB} .rob $(\vec{q_r})$.^{RF} T_T .^T $T_{TL_i} = {}^0 T_{PB}$.pos (q_p) .^{PF} T_W .^W T_{TL_i} (7)

Task Representation

$${}^{O}T_{TL_{i}}(\vec{q_{r}}) = {}^{O}T_{RB} \cdot rob(\vec{q_{r}}) \cdot {}^{RF}T_{T} \cdot {}^{T}T_{TL_{i}}$$
(5)

$$^{O}T_{TL_{i}}(q_{\rho}) = ^{O}T_{PB} \cdot pos(q_{\rho}) \cdot ^{PF}T_{W} \cdot ^{W}T_{TL_{i}}$$
 (6)

Task Constraint

⁰
$$T_{RB}$$
.rob $(\vec{q_r})$.^{RF} T_T .^T $T_{TL_i} = {}^0 T_{PB}$.pos (q_p) .^{PF} T_W .^W T_{TL_i} (7)

Discretization

$$q_{
ho}^{(k)} \in [q_{
ho}^{min}, q_{
ho}^{max}];$$
 with step $\Delta q_{
ho}$ (8

Kinematic Equation

$$\boldsymbol{q_r^k}(t_i) = \boldsymbol{rob^{-1}}(\boldsymbol{pos}(q_p^{(k)}(t_i)), \boldsymbol{\mu}); \ k = 0, 1...m; \ i = 1, 2..., n$$
 (9)

Location Cell

$$m{L}_{m{c}}^{(m{k},m{i})} = (m{q}_{m{r}}^{(m{k})}(t_{m{i}}),m{q}_{m{
ho}}^{(m{k})}(t_{m{i}}))$$

Divya Shah

Automated Tape Winding Process

Discretization

$$q_{
ho}^{(k)} \in [q_{
ho}^{min},q_{
ho}^{max}]$$
; with step $\Delta q_{
ho}$

Kinematic Equation

$$\boldsymbol{q_r^k}(t_i) = \boldsymbol{rob}^{-1}(\boldsymbol{pos}(q_p^{(k)}(t_i)), \boldsymbol{\mu}); \ k = 0, 1...m; \ i = 1, 2..., n$$
 (9)

Location Cell

$$\boldsymbol{L_{c}^{(k,i)}} = (\boldsymbol{q_{r}^{(k)}}(t_{i}), \boldsymbol{q_{p}^{(k)}}(t_{i}))$$

Divya Shah

Automated Tape Winding Process

(8)

Discretization

$$q_{\rho}^{(k)} \in [q_{\rho}^{min}, q_{\rho}^{max}];$$
 with step Δq_{ρ} (8)

Kinematic Equation

$$\boldsymbol{q_r^k}(t_i) = \boldsymbol{rob^{-1}}(\boldsymbol{pos}(q_p^{(k)}(t_i)), \mu); \ k = 0, 1...m; \ i = 1, 2..., n$$
 (9)

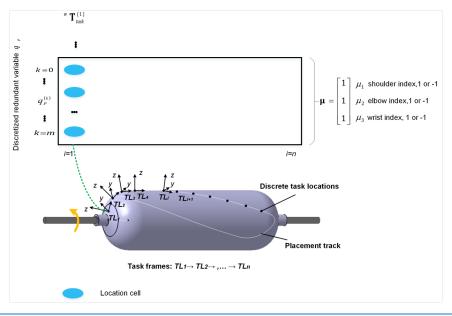
Location Cell

$$\boldsymbol{L_{c}^{(k,i)}} = (\boldsymbol{q_{r}^{(k)}}(t_{i}), \boldsymbol{q_{p}^{(k)}}(t_{i}))$$

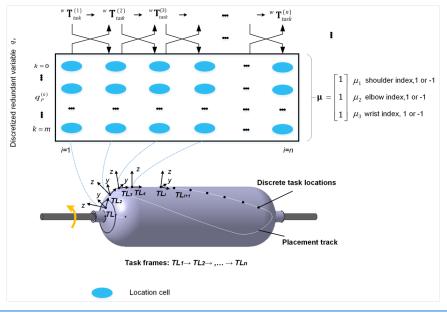
Divya Shah

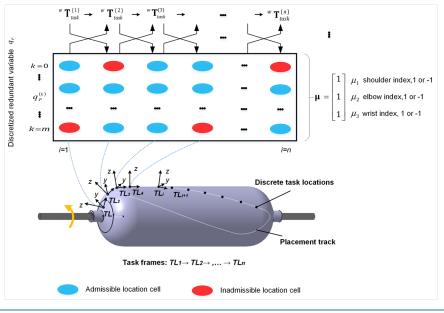
Discretization

$$q_{\rho}^{(k)} \in [q_{\rho}^{min}, q_{\rho}^{max}];$$
 with step Δq_{ρ} (8)

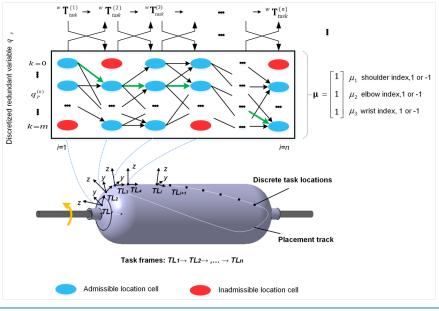

Kinematic Equation

$$\boldsymbol{q_r^k}(t_i) = \boldsymbol{rob^{-1}}(\boldsymbol{pos}(q_p^{(k)}(t_i)), \mu); \ k = 0, 1...m; \ i = 1, 2..., n$$
 (9)


Location Cell


$$\boldsymbol{L_{c}^{(k,i)}} = (\boldsymbol{q_{r}^{(k)}}(t_{i}), \boldsymbol{q_{p}^{(k)}}(t_{i}))$$
(10)

Graph-Based Optimization



Divya Shah

Divya Shah

Divya Shah

Kinematic Constraints

$$egin{array}{lll} q_j^{min} &\leq & q_j(t_i) \leq & q_j^{max} \ \dot{q}_j^{min} &\leq & \dot{q}_j(t_i) \leq & \dot{q}_j^{max} \ \ddot{q}_j^{min} &\leq & \ddot{q}_j(t_i) \leq & \ddot{q}_j^{max} \end{array}$$
 (11)

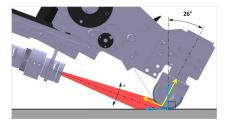
where j = 0, 1, ..., 6 is the common index for joint variables with j = 0 being q_p .

Collision Constraint

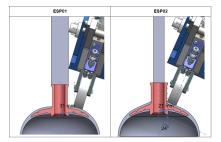
$$cols(q_p(t), q_r(t)) = 0; \ \forall \ t \in [0, T]$$
 (12)

Kinematic Constraints

$$\begin{array}{lll} q_{j}^{min} \leq & q_{j}(t_{i}) \leq & q_{j}^{max} \ \dot{q}_{j}^{min} \leq & \dot{q}_{j}(t_{i}) \leq & \dot{q}_{j}^{max} \ \ddot{q}_{j}^{min} \leq & \ddot{q}_{j}(t_{i}) \leq & \ddot{q}_{j}^{max} \end{array}$$
 (11)


where j = 0, 1, ..., 6 is the common index for joint variables with j = 0 being q_p .

Collision Constraint


$$cols(q_p(t), q_r(t)) = 0; \ \forall \ t \in [0, T]$$
 (12)

Video for collision detection.

Video for testing the tool trajectory.

• Tool orientation correction.

• Modification of shaft geometry.

Centre technique des industries mécaniques [CETIM].

$$dist(\boldsymbol{L_{c}^{(k_{i},i)}},\boldsymbol{L_{c}^{(k_{i+1},i+1)}}) = \max_{j=0,..,6} \left(\frac{|q_{j,i}^{(k_{i})} - q_{j,i+1}^{(k_{i+1})}|}{\dot{q}_{j}^{max}}\right)$$
(13)

Objective function

$$T = \sum_{j=1}^{n-1} dist(\boldsymbol{L}_{\boldsymbol{c}}^{(k_i,i)}, \boldsymbol{L}_{\boldsymbol{c}}^{(k_{i+1},i+1)})$$
(14)

Dynamic Programming Principle

$$d_{k,i+1} = \min_{k'} \{ d_{k',i} + dist(L_c^{(k,i+1)}, L_c^{(k',i)}) \}$$
(15)

Jiuchun Gao, Anatol Pashkevich, and Stéphane Caro (2017). "Optimization of the robot and positioner motion in a redundant fiber placement workcell". In: Mechanism and Machine Theory

Divya Shah

$$dist(\boldsymbol{L_{c}^{(k_{i},i)}},\boldsymbol{L_{c}^{(k_{i+1},i+1)}}) = \max_{j=0,...,6}\left(\frac{|q_{j,i}^{(k_{i})} - q_{j,i+1}^{(k_{i+1})}|}{\dot{q}_{j}^{max}}\right)$$
(13)

Objective function

$$T = \sum_{j=1}^{n-1} dist(\boldsymbol{L}_{\boldsymbol{c}}^{(k_i,i)}, \boldsymbol{L}_{\boldsymbol{c}}^{(k_{i+1},i+1)})$$
(14)

Dynamic Programming Principle

$$d_{k,i+1} = \min_{k'} \{ d_{k',i} + dist(L_c^{(k,i+1)}, L_c^{(k',i)}) \}$$
(15)

Jiuchun Gao, Anatol Pashkevich, and Stéphane Caro (2017). "Optimization of the robot and positioner motion in a redundant fiber placement workcell". In: Mechanism and Machine Theory

Divya Shah

$$dist(\boldsymbol{L_{c}^{(k_{i},i)}},\boldsymbol{L_{c}^{(k_{i+1},i+1)}}) = \max_{j=0,...,6}\left(\frac{|q_{j,i}^{(k_{i})} - q_{j,i+1}^{(k_{i+1})}|}{\dot{q}_{j}^{max}}\right)$$
(13)

Objective function

$$T = \sum_{j=1}^{n-1} dist(\boldsymbol{L}_{\boldsymbol{c}}^{(\boldsymbol{k}_{i},\boldsymbol{i})}, \boldsymbol{L}_{\boldsymbol{c}}^{(\boldsymbol{k}_{i+1},\boldsymbol{i+1})})$$
(14)

Dynamic Programming Principle

$$d_{k,i+1} = \min_{k'} \{ d_{k',i} + dist(L_c^{(k,i+1)}, L_c^{(k',i)}) \}$$
(15)

Jiuchun Gao, Anatol Pashkevich, and Stéphane Caro (2017). "Optimization of the robot and positioner motion in a redundant fiber placement workcell". In: Mechanism and Machine Theory

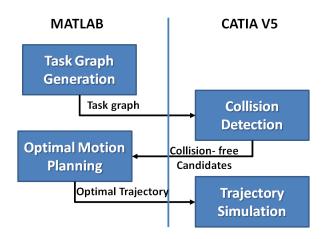
Divya Shah

$$dist(\boldsymbol{L_{c}^{(k_{i},i)}},\boldsymbol{L_{c}^{(k_{i+1},i+1)}}) = \max_{j=0,...,6}\left(\frac{|q_{j,i}^{(k_{i})} - q_{j,i+1}^{(k_{i+1})}|}{\dot{q}_{j}^{max}}\right)$$
(13)

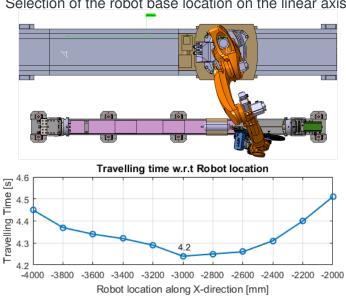
Objective function

$$T = \sum_{j=1}^{n-1} dist(\boldsymbol{L}_{\boldsymbol{c}}^{(k_i,i)}, \boldsymbol{L}_{\boldsymbol{c}}^{(k_{i+1},i+1)})$$
(14)

Dynamic Programming Principle


$$d_{k,i+1} = \min_{k'} \{ d_{k',i} + dist(L_c^{(k,i+1)}, L_c^{(k',i)}) \}$$
(15)

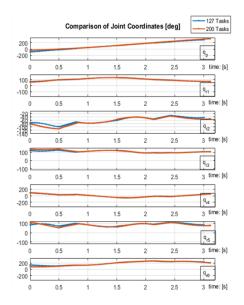
Jiuchun Gao, Anatol Pashkevich, and Stéphane Caro (2017). "Optimization of the robot and positioner motion in a redundant fiber placement workcell". In: Mechanism and Machine Theory

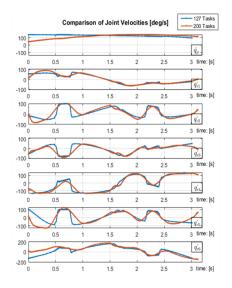

Divya Shah

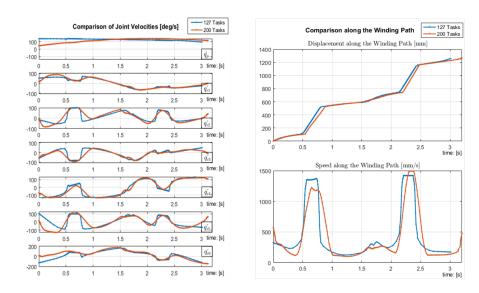
Algorithm 1: Path Planning (Dynamic Programming) **Data**: Matrix of locations L(k, i) of size $m \times n$ **Result**: Minimum path length D_{min} & Optimal path indices $k^0(i)$, i = 1, 2, ..., nD(k, 1)=0: P(k, 1) =null, $\forall k = 1, 2, ..., m$; for i = 2 to n do for k = 1 to m do for j = 1 to m do then r(j) = D(j, i-1) + dist(L(k, i), L(j, i-1));else $r(j) = \inf ;$ end end $D(j,i) = \min(r) ;$ $P(j,i) = \arg\min(r);$ end $D_{min} = \min(D(k, n));$ $k^0(n) = \arg\min(r)$; end for i = n to 2 do $k^{0}(i-1) = P(k^{0}(i), i);$ end

Jiuchun Gao, Anatol Pashkevich, and Stéphane Caro (2017). "Optimization of the robot and positioner motion in a redundant fiber placement workcell". In: Mechanism and Machine Theory

Introduction
 Automated Tape Winding Process
 SPIDE-TP Platform
 System & Task Modelling
 Optimal Trajectory Generation
 Optimal Motion Implementation
 Conclusions

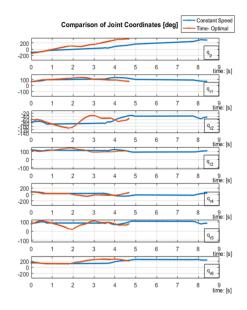

Selection of the robot base location on the linear axis.

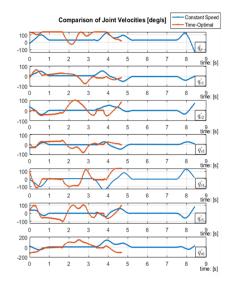

For linear axis coordinate value of -3000*mm* and with a 1*deg* discretization step for the positioner coordinate, the results obtained are as follows:

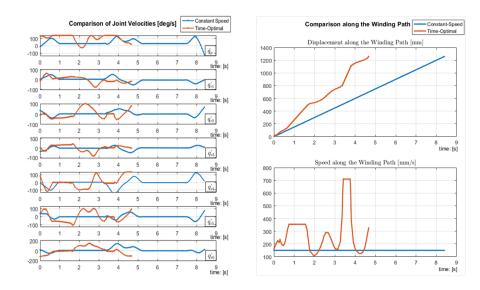

No. of Task	of Task Travelling	
Locations	Time	
127	3.0 <i>sec</i>	
200	3.2 <i>sec</i>	

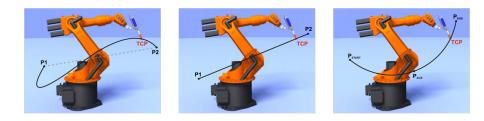
For linear axis coordinate value of -3000*mm* and with a 1*deg* discretization step for the positioner coordinate, the results obtained are as follows:

No. of Task	Travelling	
Locations	Time	
127	3.0 <i>sec</i>	
200	3.2 <i>sec</i>	

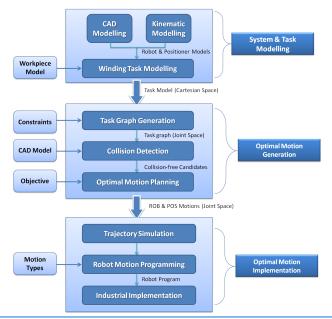



Trajectory with 127 task locations:


Trajectory with 200 task locations:


For 127 task locations, linear axis coordinate value of -3000*mm* and with a 2*deg* discretization step for the positioner coordinate, the results obtained are as follows:

Objective	Travelling	
Function	Time	
Constant Speed	8.4 <i>sec</i>	
Time- Optimal	4.7 <i>sec</i>	



KUKA System Software 8.2, Operating and Programming Instructions for System Integrators (2011).

Divya Shah

PTP	LIN/CIRC	SPLINE	
Discrete start-stop	Continuous	Continuous	
movement	movement	movement	
Joint space	Cartesian space	Both	
interpolation	interpolation	DOIN	
Exact positioning	Approximate	Exact positioning	
	positioning		
Does not allow time	Does not allow time	Allows time	
adjustment	adjustment	adjustment	

Introduction Automated Tape Winding Process SPIDE-TP Platform System & Task Modelling Optimal Trajectory Generation Optimal Motion Implementation Conclusions

Divya Shah

- Development of CAD model to complement the computational algorithm.
- Intensive and robust collision detection.
- Time-optimal trajectories for the system.
- Simulation results show reduction of processing time by 75%.
- The methodology will be presented and published at *The* 3rd *International Conference on Mechanical Engineering (ICOME),* 2017, to be held in Surabaya, Indonesia; on October 5th-6th, 2017.

- Development of CAD model to complement the computational algorithm.
- Intensive and robust collision detection.
- Time-optimal trajectories for the system.
- Simulation results show reduction of processing time by **75%**.
- The methodology will be presented and published at *The* 3rd *International Conference on Mechanical Engineering (ICOME), 2017*, to be held in Surabaya, Indonesia; on October 5th-6th, 2017.

- Development of CAD model to complement the computational algorithm.
- Intensive and robust collision detection.
- Time-optimal trajectories for the system.
- Simulation results show reduction of processing time by **75%**.
- The methodology will be presented and published at *The* 3rd *International Conference on Mechanical Engineering (ICOME),* 2017, to be held in Surabaya, Indonesia; on October 5th-6th, 2017.

- Development of CAD model to complement the computational algorithm.
- Intensive and robust collision detection.
- Time-optimal trajectories for the system.
- Simulation results show reduction of processing time by 75%.
- The methodology will be presented and published at *The* 3rd *International Conference on Mechanical Engineering (ICOME), 2017*, to be held in Surabaya, Indonesia; on October 5th-6th, 2017.

- Development of CAD model to complement the computational algorithm.
- Intensive and robust collision detection.
- Time-optimal trajectories for the system.
- Simulation results show reduction of processing time by 75%.
- The methodology will be presented and published at *The* 3rd *International Conference on Mechanical Engineering (ICOME),* 2017, to be held in Surabaya, Indonesia; on October 5th-6th, 2017.

• Testing for trajectories with different geometries and complexities.

- For workpiece liners with large lengths, use of linear axis on-line (8 DOF).
- Appropriate calibration methods to eliminate dimensional inaccuracy.
- Ways to reduce computing time, especially in collision detection.
- Optimizing the workpiece placement or the cell layout.

- Testing for trajectories with different geometries and complexities.
- For workpiece liners with large lengths, use of linear axis on-line (8 DOF).
- Appropriate calibration methods to eliminate dimensional inaccuracy.
- Ways to reduce computing time, especially in collision detection.
- Optimizing the workpiece placement or the cell layout.

- Testing for trajectories with different geometries and complexities.
- For workpiece liners with large lengths, use of linear axis on-line (8 DOF).
- Appropriate calibration methods to eliminate dimensional inaccuracy.
- Ways to reduce computing time, especially in collision detection.
- Optimizing the workpiece placement or the cell layout.

- Testing for trajectories with different geometries and complexities.
- For workpiece liners with large lengths, use of linear axis on-line (8 DOF).
- Appropriate calibration methods to eliminate dimensional inaccuracy.
- Ways to reduce computing time, especially in collision detection.
- Optimizing the workpiece placement or the cell layout.

- Testing for trajectories with different geometries and complexities.
- For workpiece liners with large lengths, use of linear axis on-line (8 DOF).
- Appropriate calibration methods to eliminate dimensional inaccuracy.
- Ways to reduce computing time, especially in collision detection.
- Optimizing the workpiece placement or the cell layout.

Thank You!!!

divya-haresh.shah@eleves.ec-nantes.fr

Divya Shah